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ABSTRACT

A detailed analysis and method of calculation is pre-

sented for determining the complete thermodynamic cycle of

a two-fluid electrohydrodynamic (EHD) power generator. The

analysis takes fully into account the compressibility of

• ithe media. Parameters are included which express the ther-

modynamic losses in the various components of the overall

system. The severe restriction on output created by the

electrical breakdown limit of the medium is clearly shown.

The method for computing the net-electrical work output per

unit mass of primary fluid and the net overall thermal

efficiency of the system is carefully developed. A sample

output together with the FORTRAN program are included.
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1. Background

This is the final report of the project "Study of

Mark's Electrothermodynamic (ETD) Power Generator", spon-

sored by the Department of Energy (DOE). The primary ob-

jective of this effort has been to provide a detailed

theoretical analysis of a type of electrohydrodynamic (EHD)

power generator proposed by the Marks Polarized Corporation.

Once a sound analytical basis was developed, it was possible

to ascertain the limitations of the proposed system and to

seek improvements.

The results of our first study are reported in detail

in Ref. (1) and sunmmarized more concisely in Ref. (2).

That work indicated the originally proposed design would

yield unacceptably poor performance and suggested a certain

*design revision. Further work was done to analyze such a

design revision and is reported in the Appendix to Ref. (1).

An improved simplified and shortened version of that work is

reported in Ref. (3). Unfortunately, the new results indi-

cated that the revised design, while showing somewhat im-

proved performance, still would not appear sufficiently

competitive in overall efficiency.

In the first study, some minor effects of compressibili-

ty of the medium were neglected. This was done in order to

simplify the calculations. Also, it has been conjectured by

Marks and others that it might be possible to improve greatly

1



the performance of EHD-generators which atilizes an ejector

by employing a two-fluid cycle. Finally, performance gains

that a diffuser might bring about appeared worthy of study.

To this end, a second study for a two-fluid cycle was under-

taken in which a diffuser is introduced just prior to the

EHD generator and where full account is taken of the com-

pressibility of both fluids at all locations.

The principal earlier effort along the lines of our

second study is Ref. (4), by Huberman, et. al, but our

present work has gone beyond anything undertaken in Ref.

(4). Although a two-fluid generator is analyzed in Ref.

(4), including the compressibility of both fluids, Huberman

et. al, make no attempt to study the complete thermodynamic

cycle. There are, moreover, a number of questionable

assumptions which cast serious doubt in the validity of the

results given in Ref. (4).

The computational scheme that we have developed was

reported in Ref. (5). There a methodical derivation of

the working formulas is given together with some preliminary

results. Some further results are given in Ref. (6).

The present report updates the material given in Refs

(5) and (6). In particular, we have found that instead of

writing an energy balance across the condenser, it is more

convenient to use a momentum balance as shown in Section II

of this report. We have reproduced herein the complete analy-

sis in its latest version.

2



A sample calculation for the two-fluid system is also

included together with the computer program listing.

Figure 1.1 is a schematic of the generator configura-

tion studied. In Marks' design, the centerline of the

4channel, which is shown in Fig. 1.1 as a straight line, is
curved so as to form a closed loop.

j 4j
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2. Introduction

For purposes of analysis, the overall thermodynamic pro-

cess in the two-fluid EHD generator may be represented by the

schematic flow didgram shown in Fig. 2.1.

Primary fluid enters the ejector at station 1, secondary

fluid enters at station 2 and the mixture leaves at staticn 3.

The mixture then passes through a diffuser, process 3-4,

the basic purpose of which is to reduce the kinetic energy of

the flow and thereby decrease the associated friction losses

downstream of the diffuser. On the other hand the diffuser

introduces certain losses of its own so that some care is

necessary to optimize the design in this respect.

The gas mixture then passes through the electrical power

section, process 4-5, from which the gross electrical power is

extracted.

Finally, the gas mixture enters the condenser/separator

at station 5. The primary fluid is separated from the gas

mixture by condensation and leaves at station 6. The fluid at

this point is assumed to be compressed liquid at a known static

pressure P6 and a known static temperature T6 . Kinetic

energy at station 6 is regarded as negligible. The secondary

fluid leaves the condenser/separator and enters the ejector at

station 2. We assume, moreover, that

P6 = P2 = P1 (2.1)

and

T6 = T2 (2.2)



006
.-. a

00

31

0

0X 06

5 06 0

CLJ
d I

wo0

(I.

0E

2L

0~ 0Q

LL6



The primary fluid which leaves the condenser/separator

at station 6 is circulated back through the pump and through

the boiler/superheater, process 7-1.

It should also be explained that the primary fluid at

station 1 is a condensible vapor of high molecular weight

which contains fine liquid droplets. Unless specifically

stated otherwise the quality z at this location is taken

as 0.95. The important thermodynamic static properties at

station 1 can be expressed in the following form.

h I = hf + z hfg Enthalpy (2.3)

is = s+ Z Sfg Entropy (2.4)

Here subscript f denotes the saturated liquid and subscript

fg denotes the change between saturated liquid and saturated

vapor. All properties are evaluated at a specified pressure

P1 ; the corresponding saturation temperature T1  is then

also known.

The corresponding stagnation properties Tsl and hsl

are fixed when the stagnation pressure Ps1  is specified.
4

Of course the entropy has the same value s I at the stagna-

tion condition as at the corresponding static state. Thus

specification of Psl and s suffices to fix all other

stagnation properties.

While it is convenient to start the analyses by stipula-

ting the quality at station 1, it is also advisable later in

the calculation to determine the corresponding quality at

7



station 4, the entrance to the electrical working section.

It is essential that the fluid entering the working section

contain finely dispersed liquid droplets of the proper size.

These droplets carry the electrical charges that are the

central feature of EHD power generation. We assume tentatively

that acceptable droplet characteristics are obtained by

maintaining the quality at the inlet to the working section

in the range 0.92 to 0.98. These limits are only estimates.

The thermodynamic analysis would be greatly simplified

if both fluids were perfect gases with constant specific

heats. In fact only the secondary fluid satisfies this re-

quirement. Nevertheless, we can define an "equivalent perfect

4gas" which adequately approximates the essential thermodynamic

properties of the primary vapor/liquid mixture. When carried

out judiciously, this procedure simplifies the analysis at the
7

cost of only a small loss in numerical accuracy .

The ratio of specific heats y of the "equivalent perfect

gas" may be deduced from the important relation

(Psl/Pl) = (Tsl/T I ) - 1) (2.5)

Solving this for y1  gives

y= - n(Psl/P) (2.6)

Another fundamental property of the "equivalent perfect

gas" is its specific heat C which may be evaluated from

the expression

8



C (hsl h 1) (2.7)

where all quantities on the right are now known.

It then follows from standard perfect gas relations that

the gas constant R1 and the molecular weight W1 of the

"equivalent perfect gas" are, respectively,

R= (i )%l (2.8)

and

R (2.9)W" 1 R I 1

where R = universal gas constant

= 8317 joules/kg-mole OK

Eqs. (2.6) through (2.9) complete the definition of the

"equivalent perfect gas" which adequately simulates the essen-

tial thermodynamic properties of the primary vapor/liquid

mixture.

It should also be explained that the secondary fluid at

station 2 is predominantly a noncondensing gas of low molecu-

lar weight primary vapor.

It can be shown that the mass ratio w of condensible

primary vapor to dry secondary gas at station 2 is given by

the expression

Wv v 6 (2.10)WG [P2 - Pv(T6 )]

9



where

wv = true molecular weight of condensible vapor (not to

be confused with the "equivalent molecular weight

Wl" considered earlier)

WG = molecular weight of noncondensing gas

Pv(T = vapor pressure of condensible primary fluid at known

temperature T6

P2 = known static pressure at station 2

The present analysis is restricted to conditions under

which w is very small compared with unity and may be neglec-

ted. Thus the fluid at station 2 may be treated as dry gas.

This greatly simplifies the analysis. Eq. (2.10) is useful for

verifying that this assumption is indeed satisfied in any par-

ticular instance.

It should be added that if it later becomes of interest

to make calculations for circumstances under which parameter

w is not negligible, the present analysis can in fact be

generalized to include this effect. For the present, however,

we prefer to deal only with the simpler situation in which w

may be neglected.

10



3. Ejector

The ejector receives a primary stream of high molecular

weight gas at station 1, a secondary stream of low molecular

weight gas at station 2 and discharges the resulting mixture

at station 3. Static conditions at these three stations are

designated by subscripts 1 , 2 , 3 . Stagnation conditions

at the corresponding stations are designated by subscripts

sl , s2 and s3 .

The following quantities are arbitrarily specified or

known at stations 1 and/or 2, namely,

* Molecular weights: W1  and W

Ratios of specific heats: y1 and Y2

Stagnation pressure of primary jet: Psl

Stagnation temperature of primary jet: Tsl

Static pressures: P1 
= P2 (= P6 )

-* 1Static temperature of primary jet: T1 (= saturation tempera-

ture of primary fluid at pressure P1 )

Static temperature of secondary jet: T2 (= T6 )

Mass flow ratio: Ai/ 3 = 1./( n + fn2 ) = x

Velocity ratio: V1/V2 = y

We treat the fluids at stations 1, 2, 3, 4 and 5 as per-

fect gases with constant specific heats.

The velocity ratio of the ejector may be developed as

follows:

V1  M 1 R1 Tl M (3.1)

V 2 Y 2 Mf2 Y2 R2 T 2  Tsl/T1  M2

1-



We can now use this result and other standard perfect

gas relations to complete the calculation of key thermody-

namic properties at stations 1 and 2. It is convenient to

arrange these calculations sequentially as follows:

-y1 1) T, (3.2)

=.(V 2  yl R, Tsl Ml(33)2 = (V - y2 R2 T2 \Jll .
€T

s2 1 + 2 M2 (3.4)

T = T2 (Ts 2 /T 2 ) (3.5)

Y2

s 2\ s 2 ( 3.6 )

P P 2) (3.7)

Before we can determine the actual conditions at station

3, the outlet of the ejector, it is first necessary to analyze

two other hypothetical cases as indicated schematically in

Fig. 3.1. In all three of these cases the flow is taken as

steady and adiabatic.

The first case, that shown in Fig. 3 .1(a), involves a

hypothetical device which receives two gas streams at stations

1 and 2 and discharges the resulting mixture at station x . In-

let conditions at 1 and 2 are identical to those of the actual

ejector.

12



®I-
Hypothetical Minimum

Loss Device

o (a)

(b)

(I0 X

Actual Ejector

oD xc)

*Fig. 3.1 COMPARISON OF ACTUAL EJECTOR WITH IDEAL
EJECTOR AND WITH HYPOTHETICAL MINIMUM
LOSS DEVICE.
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Recall that the adiabatic mixing of two different gases is

an inherently irreversible process that always involves a cor-

responding entropy increase. We stipulate that the first case

is such that the only irreversibility which occurs is that asso-

ciated with this mixing. We term this mass mixing to distin-

guish it from another type of mixing considered below which we

term momentum mixing.

The second case, that shown in Fig. 3.1(b), involves an

ideal ejector which receives two gas streams at stations 1 and

2 and discharges the resulting mixture at station y. Again,

4the inlet conditions at 1 and 2 are identical to those of the

actual ejector. This case satisfies, among other relations, the

idealized one-dimensional momentum equation for frictionless,

constant area flow. It can be shown that in this case there is

an overall entropy increase which includes not only the previ-

ously mentioned effect of mass mixing but also a further increase

associated with momentum mixing.

The third case, that shown in Fig. 3.1(c) , represents the

actual ejector itself which receives input streams at stations

1 and 2 and which discharges the resulting mixture at station 3.

All three of the above cases refer to constant area pro-

cesses in the sense that

Ax = Ay = A3 = (A1 + A2 ) (3.8)

Once the hypothetical operating conditions at stations x

and y have been found, it then becomes possible to express the

14



corresponding actual conditions at station 3. This is accom-

plished through the use of an ejector effectiveness nE .

This parameter is defined more explicitly in the later analysis.

Values of nE must be estimated by reference to test data on

ejectors (i.e., Ref. 8, 9, 10).

I 15



4. Adiabatic Mixing of Two Streams

The process in the ejector is treated as the adiabatic

mixing of two streams. The following relations can be shown

to apply.

= 8315 Joule/kg-mole OK (4.1)

R (4.2)

R (4.3)R2 =-
2

Rx  R = R = x R1 + (1 - x) R (4.4)
y 3 12

* yR
7Y1 R1

1C (4.5)~~pl - l

Y2 R 2
C2 ( 2  (4.6)

Cpx =Cpy = Cp3= x Cp + (1 - x) CP2 (4.7)

S3 Cp3R (4.8)5I 7 x
= 7y 7 3  (p3 _ 3

T T = T = 1 [x + (1 - x) Ts2] (4.9)
sy =Ts3 [3  l I  Cp 2 T

Ax  = A = (A + A (4.10)

y 3 A1 A 2)

Notice that the quantities R , C ,y ,T and A all
p s

have the same values at stations x, y and 3.

This fact may be used to simplify many of the subsequent

expressions. It is always permissible to substitute subscript

3 for subscripts x or y on any of these quantities.

16



5. Mass Flow

It is convenient temporarily to omit station subscripts

1, 2, 3, x, y and thereby develop certain needed mass flow

relations in generalized form. Thus the mass flow across an

arbitrary station may be written and developed as follows.

=pAV =()A (VyRT M) P AM

P -A M (5.1)

P *A
This may be rewritten as

! P A
,: = s f(M) (5.2)

JWs7

! ,, where the auxiliary function f(M) is defined as follows.

f ,(M), = ., M = M + ( -1) .f

(5.3)

Eq. (5.2) can be applied specifically to stations 1, 2,

x, y, 3 as follows

Psi A1sl 1 (M ) (5.4)
f (M1)Y 1 Tsl/1

• 2 P 2 A 2!

2 P2  A/2  f(M2) (5.5)

2 Ts2/ 2

17



Px A
fn s f (M )(56

R3 T5 3/Y3  X

=hs f (M ) (5.7)
y R 3 T s3/Y3  ~

fn 3 = p s3A f (M3) (5.8)
s4R T 3/y 3

also

1 x (5.9)

fni, th ih1 t*1h +±2h (5.10)

From Eqs. (5.4), (5.5), (5.9) and (5.10) we readily find

that

(A, .x(Ps 2 R siY 2 f(M 2) (-1

Then from Eq. (5.10) we infer also that

(A,) = (A 1/A 2) (5.12)

Since all quantities on the right side of Eq. (5.11) are

now known, Eqs. (5.11) and (5.12) fix the area ratios A 1/A 2

and A1/

From Eqs. (5.5), (5.6), (5.9) , (5.10) and (3.8) we deduce

further that

18



(1 - A1 /A3 ) 1Ps2 R3 Ts3 "2

All quantities on the right side of Eq. (5.13) except

P s are now known. The method of determining P sx is ex-

plained in a later section; refer to Eq. (5.15). Once Psx

has been found, Eq. (5.13) fixes f(Mx) whereupon Eq. (5.3)

fixes Mx itself. The solution of Eq. (5.3) for M when

f(M) is known involves an iterative procedure which is ex-

plained later in this section.

From Eqs. (5.6), (5.7), (5.8) and (5.10) we also find that

Psx f(Mx) = Psy f(My) = Ps3 f(M 3 ) (5.14)

Assuming Psx and M known, this relation along with Eq. (5.3)

fixes P when M is specified; it also fixes f(M3) and
sy y

M3 when Ps3 is specified. The methods of calculating M

and Ps 3 are explained later; refer to Eqs. (7.8) and (8.14).

* iFig. 5.1 is a rough sketch of the function f(M) as defined

by Eq. (5.3). This function vanishes at M = 0 and at M =

The maximum value occurs at M = 1 and equals

(y + 1)

fmax [Y + (5 .15)

It is clear from the figure that in the range 0<f< fmax

Eq. (5.3) has two positive real roots, one subsonic and the

other supersonic. Usually the supersonic root must be discarded

because it is not consistent with a further constraint imposed

by the second law of thermodynamics.

19



fmaxI

t
f(M)

0

Fig. 5.1 APPROXIMATE SKETCH OF FUNCTION f(M)
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In order to solve Eq. (5.3) for M when values of f

and y are specified, we utilize an iterative procedure based

on Newton's method. Let M denote the nth trial value ofn

M . We then define a function F(MN ) and its derivative

F (Mn ) as follows.

(y + )
F(M) = f [l + M2 - M (5.16)n"-2 n n

-(3 -Y

F' (Mn) = f) M nJ 1 + Y ] - 1 (5.17)

The (n + l)!t trial value of M may now be taken as

F(Mn
M + 1) =M (5.18)(n F (Mn)

The cycle of calculations defined by Eqs. (5.16), (5.17)

and (5.18) is repeated until the result for M converges ton

a stable value at the desired level of accuracy.

Thus

M = Um M
n (5.19)

It is readily apparent that the value of M so obtained

satisfies Eq. (5.3) for the prescribed values of f and y

21



6. Entropy

Consider the case shown in Fig. 3.1(a). The specific

entropy sx of the discharged gas may be expressed in the

form

s x = x[Cp n R1

+ (1 - x) Cp2 Zn( - R2 Zn(P)] (6.1)

where Pxl and Px2 are the partial pressures of the two com-

ponents of the gas mixture. Symbols P and T denote the

pressure and temperature of the ambient atmosphere. The en-

tropy of each component is assigned the value zero at this

reference state P0 , T

Incidentally, the primary fluid, being condensible, might

well exist only in the liquid state at the reference condition

P0 , T0 . Nevertheless, so long as it is in the gaseous state

at station x , Eq. (6.1) may still be used.

The partial pressures of the two components are propor-

tional to the respective mol fractions. Hence

P xl x R1  /P\) x R,/(P\
= x +(i- xIR2  = ) (6 .2)

x R1  + (1 - x)R 2  / -- R3 /P\

22



Upon substituting Eqs. (6.2) and (6.3) into (6.1) and

simplifying we may obtain the result in the form

s x = s + C n ()- R 3 Zn (6.4)

where

Sm = R3 Zn R - x R n (x R) - ( 1 - x)R 2 Zn [11 - x)R 2]

(6.5)

It can be shown that this quantity sm represents the

entropy increase associated with the mass mixing of the two

different gases.

Moreover, since the entropy of the stagnation state s~X

is by definition identical to that of the corresponding static

state x , we may replace Tx and Px in Eq. (6.4) by Tsx

and Psx , respectively. Thus we obtain

sx = s m + Cp3 Zn ( /) - R3Zn (6.6)

In previous studies of this series, we have considered

only the special case in which the same fluid is employed for

both the primary and secondary streams. In that case we have

R1  R 2 = R = R (6.7)

Cpl = p2 = Cp3 = p (6.8)

Y 1  Y2 
= Y3  Y (6.9)

Moreover, in this special case there is no mass mixing, so

that we must set

23



s m  0 (6-10)

Consequently, Eq. (6.6) now simplifies to

s= 0 n Ts x  R Ln (-Psx)
x  0+ c o (6.11)

Next reverting to the case of two different gases, let

At denote a time interval during which unit mass crosses

station x . During this same interval x units of mass cross

station 1 and (1 - x) units of mass cross station 2. The

entropy which leaves across station x must equal the entropy

which enters across stations 1 and 2 plus the entropy increase

*caused by the mass mixing. Thus

s x  sm + x S1 + (1 - x)s 2  (6.12)

where

s= C Zn (T °  - R Zn (6.13)

C Z n s 2 - R Z n ( P s 2 )4 s=c~n~2 n2 (6.14)

Upon eliminating s between Eqs. (6.6) and ('6.12), we

find that sm also cancels from the result. It is then a

simple matter to solve for the exit stagnation pressure in the

form

Zn (9A 1 ~- c 3 Zn (;3 - ( ~-l -) (6.15)

24



Thus the sequence defined by Eqs. (6 .13), (6 .14) and

(6 .15) now fixes P . Next referring back to Eq. (5.13),Sx

we can calculate the value of f (Mx ) ; finally, from Eqs.

(5 .16) , (5 .17) , ( S 18) we can calculate M itself. Once

P ', T SX = Ts3 and M are known, it is a simple matter to

calculate the corresponding conditions Px 'Tx from the

usual perfect gas relations.

4

25



7. Momentum

Consider the idealized one dimensional constant area

ejector shown in Fig. 3.1(b). The momentum equation for this

system may be written

2 2 2(P1 + P1 VI )A1 + (P2 
+ P2 V 2 )A2 = (Py + Py Vy )Ay (7.1)

The mass conservation relation for this system can be

expressed in the form

P 1 A 1  ' -2 A2 V2  A V (7.2)

x y1- - X) y y y

Let us divide the three terms of Eq. (7.1) by the corres-

ponding three terms of Eq. (7.2). Notice that the areas can-

cel out of the result. In this way we obtain

1(PI + Pl V12 (P2 + P 2 V 22 (Py + Py Vy 2

,x Pl Vl + (i - X) v2 Py Vy
p1 1  P2  2 Py y

* 4(7.3)

Temporarily dropping the station subscript, we next deve-

* lop the typical term of Eq. (7.3) in generalized format as
* 4

follows.

(P _ [P + R (YRT) M2] (IR=

(P4 p+ u = j (1 + yM
pvyRTM M

R (1 + YM2  (7.4)

M A + (Y-)M

Observe that the pressure P cancels from the result.

It is convenient to define the auxiliary function
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g(M) - M. A + -Y- )M2  (7.5)
(1 + yM2 )

With this notation Eq. (7.3) may be rewritten in the

form

1: '-"-xR, s  (1 - X) /R2 T's2 1 /13 Ts'53a-RTJ+ = 7.6)
g(M2) Y2 9( Y3

Rearranging gives

g R3s3 +( TsX) /R2 Ts 2 71

g(My) = / 3  g (Ml) __1 (M) Yl2(17

Since all quantities on the right are known, Eq. (7.7)

fixes g(My) . Then M itself can be found by inverting
y y

Eq. (7.5). Fortunately, an explicit solution is possible in

2
this case as Eq. (7.5) can be reduced to a quadratic in M

The result is
:i4

22
M2  (1 - 2yg 2  ! /I _ - 2( y+ 1l)g2

= (7.8)
1- y(l - 2yg

The general character of the function g(M) is sketched

in Fig. 7.1. Notice that g(M) vanishes at M = 0 , reaches

its peak value gmax at M = 1 , and decreases toward the

limit g, as M- . It can be shown that

1 (7.9)
Sgmax v/ 2(Y 1 )

g = (7.10)
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g (M) O
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Fig. 7.1 APPROXIMATE SKETCH OF FUNCTION g (M)
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Fig. 7.1 discloses the existence of a supersonic root over

the range g.<g<gmax* This root should not be accepted until

a check calculation is made to determine whether the result is

consistent with the second law of thermodynamics. The subsonic

root is found by retaining only the negative sign before the

radical in Eq. (7.8).

Once M has been found from Eq. (7.8), the corresponding
y

value of P may be found from Eqs. (5.3) and (5.14). This
sy

suffices to fix all properties at states y and sy
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8. Availability

The entropies sI  and s2 of the two input streams

were defined earlier in Eqs. (6.13) and (6.14). The corres-

ponding steady flow availability functions with respect to an

ambient atmosphere at pressure P0  and temperature T0  may

be written

= Cpl (Tsl - To ) - T0 s I  (8.1)

= Cp2 (Ts2 - TO) - T sl (8.2)

Consequently the total available energy entering the sys-

tem becomes

Dm x 1 (l -x) 2  (8.3)

The respective entropies of the streams leaving at stations

x ,y and 3 are

Sx S3 + C T--3 - R3  n P- (8.4)

+ s~y s + Cp Zn \T I \o
ry Rm ZC3  n 3  n (!) (8.5)

s + C Zn Ts3 R [ s3) 86
3 m p3 (8.6)

where s m  has been previously defined in Eq. (6.5).

The corresponding availabilities of the streams leaving

at stations x, y and 3 may therefore be written

30



x = Cp3 (Ts3 - T) - TO sx (8.7)

y = Cp3 (Ts3 - T) - T sy (8.8)

P 3 = cp 3 (Ts3 - T0 ) -T s3 (8.9)

*Now consider the losses of availability listed below.

By substituting the above expressions for the quantities on

the left and simplifying we readily obtain the expressions

shown on the right. Thus

(m - ) =T s (8.10)
x 0 m

\Ps3
(4'- ' =R T (8.12

These results are very significant. Eq. (8.10) defines

the loss of available energy caused by the mass mixing of the

two different gases. Eq. (8.11) defines the further loss of

available energy caused by the momentum mixing in an idealized
4

ejector. Eq. (8.12) defines the augmented loss of available

energy caused by the momentum mixing in the real ejector.

It is useful to postulate an empirical relation between

these last two losses which is shown below on the left. The

expression on the right then follows from Eqs. (8.11) and

(8 .12). Thus

SV) Zn (P s/ ( 8.13)
x - 3 nE  in (P s3/Psx
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We term nE the ejector effectiveness. Its value,

which is always less than unity, must be estimated from appro-

priate test data on ejectors.

If we treat n as known, Eq. (8.13) fixes Ps3 " The

solution is simply

1

P-3 = Psk*)(8.14)' " s3 Psx Ps

We can next find f(M3) from Eq. (5.14) and M from

Eqs. (5.16), (5.17) and (5.18). This suffices to fix all pro-

U perties at states 3 and s3 thereby completing the analysis of

the ejector.

3
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9. Diffuser

It is convenient to analyze the diffuser in terms of the

concept of availability in steady flow. However, we wish to

deal with the characteristics of the diffuser itself and these

cannot depend on the arbitrary values P T which happen

to characterize the condition of the ambient atmosphere. We

can achieve our objective by defining the availability with

respect to a reference state P3  T which characterizes

the diffuser rather than with respect to the ambient state

! P ,T O
0  0

Under these circumstances we may write the appropriate

*i availabilities at diffuser inlet and outlet as follows

*S3 = Cp3 (Ts3- T3) - T3 Cp3 Zn (s-)3- R3 Zn P) (9.1)

'@s4 = Cp 3 (Ts3- T3) - T3 Cp 3 Zn R 3  Zn( -) (9.2)

These equations make use of the fact that T = Ts 3 .

- Also, states s3 and 3 are at the sane entropy so that

(Ss3 - s3) = 0 = C Zn T3) - R3 Zn P3 (9.3)

From Eqs. ( 9. 1) and (9.3) we conclude that

Ops3 = cP3 (Ts3  T T3 = 4( 9.4)
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This result shows that the available energy at the
0

diffuser inlet is simply the inlet kinetic energy itself.

The loss of availability through the diffuser may be

found by subtracting Eq. ( %2) from (9.1). The result is

('p4 - s3) = A = + R3 T 3 Zn (P) (9.5)

We now define the diffuser effectiveness as

= 4 
( 9.6)s3/

so that

R3 T3 Zn (Ps4
_ s4 (1 n C)= (T - s43) (9.7)

This reduces readily to

Zn 
s3

n \ ps4 (9.8)

(Y32M 
3

Solving for the pressure ratio gives

7 3 M32
P s4 e 1 n D )  2

Ps3 (9.9)

This is the result required. It fixes Ps4 when P s3

M3  and nD  are specified.
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Assuming the area ratio A3/A4  to be arbitrarily spec-

ified, we can find M4  from the continuity relation. Refer-

ring to Eq. (5.8) we may write

fn = Ms3 A3  f(M3  (M4= 4 (9.10)
A 3 Ts3/Y 3  f T s3/ 3

Consequently

f(M 4 ) = (s4 (_1) f(M3 ) (9.11)

S44
(:Eq. (9.11) fixes f(M 4 )  Then M 4  follows in the usual

way from Eqs. (5.16), (5.17) and (5.18). The result suffices

to fix all properties at states 4 and s4 . Thus

T3) (s)= 1 + M2(9.12)

T4 = Ts 3/(Ts3/T 4 ) (9.13)

Y3

' - - (9.14)

P4 = Ps4/(Ps 4/P4) (9.15)

The configurations studied in earlier work did not incor-

porate a diffuser. For the purpose of comparing the results

of the present analysis with corresponding earlier work, it is

desirable to be able to eliminate the effects of the diffuser

in certain cases. This can be accomplished in the present

analysis simply by setting
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D = 1 (9.16)

and

(A44 1 (9.17)

-' It is easy to confirm that under these circumstances

T =T (9.18)
s4 s3

PS4 Ps3 (9.19)

M = M3  (9.20)

A4 = A etc. (9.21)
4 3

and all diffuser effects disappear.

36
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10. Electrical Power Section

The power conversion process in an EHD duct is usually

treated on the basis either of constant area or of constant

static state. Inasmuch as electrical power output per unit

mass is small, the numerical differences between the results

*. computed by these two methods is negligible. For definite-

* ness in this analysis, however, we assume constant area.

The electrical power that can be obtained from an EHD

duct of constant area, negligible change of density and optimum

length can be estimated from the one dimensional version of

Poisson's equation which governs the electrical field. The

solution is well known and will not be derived here; a detailed

derivation may be found in Ref. (3). The essential result may

be written in the form

P= E 2 A4 V4 (10.1)

" where

P = gross electric power output, watts

e = permittivity of medium

= 8.854 x 1012 farad/m (for any gas)

Eb = dielectric strength of medium, volts/m

A4 = area of duct (constant)

V4 = velocity
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According to the test data analyzed in Ref. 4, the dielec-

tric strength is well approximated by the expression

Eb = CB3 R3 P 4  (10.2)

where CB3 is a characteristic constant of the medium. The

data show that Eq. (10.2)applies to air or steam up to about

10 atmospheres pressure with

CB3  9.49 x 10 3 m2 IK/cmb (10.3)

In this study we assume that Eq. (10.2) can be extrapolated

up to about 100 atmospheres pressure. We also assume that an

expression of the same form applies to other media besides air

or steam but that each medium has its own characteristic value

of the breakdown constant C.
4..-

In the two-fluid system, the separate values of the

breakdown constants CBl and CB2 are usually known, but the

breakdown constant CB3 of the resulting mixture is seldom

known. In the absence of adequate test data bearing on this

point, we tentatively assume that CB3 can be estimated from

the hypothetical relation

C B3  [x1 + (1-)R 2 ]  (10.4)

R- 3x 1CB1 +)R(1 2

Upon substituting Eq. (10.2) into (10.1)and dividing

through by the mass flow rate, we find the electrical work out-

put per unit mass of fluid in the form-

4 2 P4 = C 3 (Ts4 - Ts 5 ) (10.5)
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By use of standard perfect gas relations, Eq. (10. 5 )can

be changed to a more useful form. In this connection set

(Ts 4 - Ts 5 ) = T s  (10.6)

and 2
B 3 0 (10.7)

T0

where Po = ambient pressure, N/m
2

To = ambient temperature, OK

v Notice that a represents a dimensionless version of

the electrical breakdown constant.

Eq. 10.5 now yields the important result

*1

AT 1 P T\ 2/ -

k_ 4o .) +( 2 M (10.8)

The corresponding gross electrical work output per unit

mass of fluid is then simply

W*C A T (10.9)
e P3 s

Unfortunately, the known value of e and tie typical

experimentally measured values of C are very small. Con-

sequently, the dimensionless breakdown constant $ is ex-

tremely small compared to unity. Hence the drop in stagnation

temperature ATs and the gross electrical work per unit mass

W* are also typically very small. This is a very basic ande

serious limitation on the performance that can be obtained from

an EHD generator.

Treating the process 4-5 as isentropic, we may write
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Y3

5Ts5 (10.10)Ps5 = s4 \Ts4 /

By analogy with Eq. (5.8) we write the continuity rela-

tion as

P A P A
Ss4 4 A4

s4 4 f(M4 ) s5 5 (1011)= = _ __ _f(M 5) -- 5 0.1
P3 Ts 4/Y3 P3 TsS/IY

It then follows that

f(M 5 ) fM) (10.12)

This fixes f(M 5 ) whereupon M5  may be found in the

usual way from Eqs. (5.16), (5.17) and (5.18). However, con-

vergence should now be very rapid since we may take as a

first approximation

* M5 A M4  (10.13)

This solution now suffices to fix all properties at

states 4 and s4
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11. Condenser/Separator

The primary fluid which leaves the condenser/separator

at station 6 is assumed to be compressed liquid at known

static pressure P6 = P2 = P1 and at known static tempera-

ture T6 = T2 . The kinetic energy of the liquid at station

6 is assumed to be negligible.

Temperature T6 must be equal to or greater than the

ambient temperature TO  in order to satisfy the require-

ments of a heat balance on the condenser/separator. No

attempt is made in this analysis to formulate this actual

heat balance; instead T6  is simply treated as a given or

known quantity. However, it may be of interest later to

investigate the effects of varying T6 on the overall per-

formance of the EHD system.

The secondary fluid which leaves the condenser/separator at

station z consists primarily of a low molecular weight nonconden-

sing gas. It also contains some secondary vapor, but the mass

fraction of this vapor is treated as negligible in this analysis.

4 Thus the secondary fluid at station z is treated as dry gas.

The thermodynamic process in the condenser/separator can be

most conveniently analyzed and modelled by employing the momentum

theorem. We treat the condenser/separator essentially as a one

dimensional, constant area device in steady flow. By equating

the net applied pressure and drag forces to the change of

momentum flux in the direction of flow, we obtain the following

simple relation, namely,
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(P5 Pz ) A5 D ( - x)m3 V - 5 (11.1 )

The effective drag force D in this equation represents two

irreversible momentum loss effects. One of these is the loss of

momentum produced when the condensible vapor in the incoming flow

is condensed and brought to a halt on the stationary surfaces of

the condenser/separator. The other is the additional friction

drag force; the latter is conveniently expressed in terms of an

empirical friction coefficient cf Thus we may write

1 2D = x m3V5 + cf( P5V5 )A- 5  (11.2)

Next we substitute Eq. (11.2) into 11.1), bring all terms

to one side of the equation, regroup terms, and divide through by

the quantity p5A " We also make use of the following auxiliary

relationships, namely,

S V~ 5  m35y 2 (13
PS A = = (11.3)

and
M3:V z  Y2R 2T zP--A = Y3 M5 M z "R T5  (11.4)

In this way the following result is finally obtained -

Pz c of 2 2 R 2T
E~) (1 -) + (1 -x - )Y3 M5 - (1 - X)M M z _2RT 2  (11.5)
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The quantity E(x) serves here merely as a convenient abbre-

viation for the sum of terms shown. It may be said to represent

an excess of momentum available over that required to satisfy the

various losses that occur across the condenser/separator. In any

case, for assigned values of all other parameters, we seek by

successive trials a value of x such that E(x) = 0 . Thus Eq.

(11.5) fixes the mass fraction x in a manner which is consistent

with the other specified input parameters.

Of course, if the various fixed input parameters are not

suitably chosen, Eq. (11.5) cannot be satisfied for any trial

value of x in the range 0 < x < 1 and no solution is physi-

cally possible under these conditions.

4
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12.. Cycle Efficiency

Once a solution has been found such that E(x) = 0 , it

becomes a straightfoward matter to calculate the correspond-

ing overall cycle efficiency.

Because of the pressure drop through the boiler/super-

heater , the pressure P7 = Ps7 at boiler inlet is slightly

higher than the stagnation pressure Ps 1  of the primary

fluid at the ejector inlet. We assume that the ratio Psl/Ps7

is a specified constant. Hence with Ps 1  specified, P5 7

is also known. Also the pressures P6 = P1  are known.
*

Consider the ideal pump work w done per unit mass of
PIprimary fluid. For the present consider the hypothetical case

of a reversible pump. Also note that density changes across

the pump are negligible. Hence we may write

W* (P s7 P6 )
wp =(1.)
P P6

The ideal gross electrical work output per unit mass of

mixed fluid has earlier been established in Eq.(10.5). It is

denoted by symbol we

Let us now denote the net useful electrical work output

per unit mass of primary fluid by symbol wnet . It may be

related to w and w in the following waye p

wnet (-" ) Joule/kg (12.2)

where n x the excitation efficiency, allows for the small

electrical power expended to excite the system and where n ,
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the pump efficiency, allows for irreversibilities in the pump.

The heat input in the boiler/superheater per unit mass

of primary fluid may be written

w
qin = (hsl - h6) - -2 (1Z.3)

where h6  is the enthalpy of the primary liquid at conditions

P6 , T6  as listed in suitable tables of properties.

The overall thermal efficiency of the cycle can now be

calculated from the simple formula

Wne--- nt ( 12.4 )
nC = inI

Both n and wnet are useful parameters which charac

terize the overall thermodynamic performance of the EHD sys-

tem.

Eq. (12.2) shows clearly how the ejector serves as a

kind of amplifier which increases the electrical work output

per unit mass of primary fluid. This effect is shown by the

presence of the parameter x in the denominator of the first

term. Notice the beneficial effect of a low value of x on

parameters wnet and nc" Unfortunately, the value of x

cannot be stipulated independently in advance; it is fixed

by the other specified input parameters as explained in the

previous section.

Notice that owing to the fact that we is normally

very small, it is possible in some circumstances for wnet

45
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to take on values which are actually negative. When this

happens it means that electrical power output is insufficient

to drive the pump.

The relationships developed in this and the preceding

sections make it possible to carry out systematic parametric

studies of various one-fluid and two-fluid EHD cycles, with

realistic allowances for the various losses that occur. Such

studies can establish optimum design parameters and perfor-

mance limits under various circumstances. These results in

turn can finally permit informed conclusions to be drawn con-

cerning the ultimate feasbility of this general type of EHD

power generator.
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23. Calculation Sequence

In this section we summarize the various equations pre-

viously derived in the approximate order in which they would

be used in the calculation of system performance. Also listed

are the initial input parameters whose values must be specified

in order to start the calculation and various further input

parameters whose values must be specified in order to proceed

with various successive stages of the calculation.

Initial Input Data: P 1 = P 2 = P6  T1 Psl T sl (hsl - h1 )

R = 8315 Joule/kg*K

( n(T sl/T 1
= 1- nsl/P (13 .1)

(h sl h hl)

Cpl = (Ts l T) (13.2)
sl 1

R= (1 Cpl (13.3)

W= R (13.4)

Further Input Data: Wv , WG = 2 , T = T6 , Pv(T6)

Wv Pv (T6 ) (13.5)

WG [P2 - Pv(T 6 ) ]

Verify that w<<l
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Further Input Data: 2 () = y

= , (13.7)2 V 1) 2 R 2 T 2Mr-11T -

Verify that M2<1 (13.8)

YT) = 1 + 2  M22  (13.9)

Ts2 = T2(Ts2/T 2 ) (13.10)

2
2

' 2 
-

IT
% T - c1'3. n1 )

%p = )(13.12)Ps2 2 P 2 -

Further Input Data: x (trial value)

R2 W 2 (1 3.13)

R 3 =xR 1 + (1 - x) R 2  (13.14)

c Y2 R2
Cp2 =(Y2 - ) (13.15)

Cp3 x Cp1 + (1 - x) Cp2  (13.16)
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Y3 (C p3 R(13.17)p 3

f(3 = M~p 1 R3-(3-7

1

1T [x T i - x1 1  X) C 1 (13.19)Ts3 C3 ClTlp2 Ts2

(yl + )

f(M) = M 1 + yl 1 (13.19)

1(y 2 + )

f 2 (M m1 + x) 2 R 2 s2 (Y (13.20

:~ 2 72 - 22 2(2 i

1(2 = M 2  1 Y 2 (13.21)

A 2q Ti (1- ) R 2 W 1321

A (AI/A 2 )1 A (1 + AI/A2 ) (13.22)

Further Input Data: P 0 To

S = Cl Zn -Ts R1 n (Psl) 3. 23)\ 1 To 0 1 PO /( .3

S2 _ 2 R2 Zn (_ (13.24)

p xc) 3  \ o - x - (1- x) s (13.25)

Zn (P sx/Po)

Psx P 0oe (13.26)
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f (M(1f A 1/A 3  (,) R3Ts32-f((1.7
x -1- x)S" J Ts 3  f(M2) (13.27)

(Y3 + 1)

fmax = + 72 3 (13.28)

Verify that f(Mx) = f<f max (13 .29)

For first approximation set Mx = M2  (13.30)

Iterate using Eqs. (13.31) , (13.32) , (1.3.33).

(Y3 + 1)

F(M n f - M (13.31)

.A'(3- y,)

F(M) = f M+ ) 4 (y3 - ) 2 (Y 3  1)  (13.32)F2 f 2 Mn 2

M M F (M) (13.33)
(n + M F ) 7n

Iteration converges to fix M
S4

g(Ml) = + ( ) M 1  (13.34)
1 (i + Y1 M12) F 2

g(M ( 2  + 1 M 2= (13.35)

(1 + y2 M2 25
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gcMy) = g( _l_ Y + gc"2) R
-S ~ g2 )(1 x

= (1 2Y3 2 ) - - 2 (Y3 + 1) (13.My 1 - "(3 (1 - 2 y3 g2)(1.7

Eq. (13.37) applies provided that g (3 = 1 38)

If g = g. the solution reduces to

M= (13.39)

Once My is known from Eq. (13.37) or (1.3.39)

(Y3 + 1)

1)(2 7Y3 f
f(My) (1M + (¥3

f(M2) (13.40)

f (M)
Ps = Ps x (13.41)
sy sx f(my)

Further Input Data: niE

i/n E

P s3 sx (k)(13. 42)

f(M3) = s / f(Mx) (13.43)

Verify that f(M3) = f<fMax (13.44)
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For a first approximation take M 3 M y(13.45)

Iterate using Eqs. (13.31) ; (13.32), (13.33).

Iteration converges to fixM3

(3) K+ 21)M21 (13.46)

T T53/(T53 /T) (13.47)

Y3

3) 3)(13.48)

(P3  -P(Ps 3 /)

P 3 s3/Ps3 P 3)(13.49)

Further Input Data: nD (A

-s Ps 1 D) (13.50)

f(M 4) = f = s 3) 3~. If(M 3) (13.51)
-. - 4 ~ P5 4 /\ 4 1

Verify that f(M 4  = ~ ~<max (13.52)

For a first approximation take M H3  (14.53)

Iterate using Eqs. (13.31) , (13.32) ,(13.33).

Iteration converges to fix M4

s4 s (13.54)
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T42 M42 (13.55)

T4 =T s4/(Ts4/T 4 ) (13.56)

Y3

s4 s T 4  
(13.57)

T4P4 T4 :

p 4  p 4/(Ps 4/P4 ) (13.58)

Further Input Data: c = 8.854 x 10-1 2 farad/m, CBl CB2 ,

(CB = 9.5 x 103 m
2 K/cmb for air or steam)

CB3 = [x R C + (1- x) R2 CB2 ] (13.59,
B3 R 1 El 2B

3

• 2 .
-. CB32 p

2 = 
(1 3.60)

AT2/(Y 3 -1 )

--- 2y3 o Is) 1 + ( )M4 (1 3.61)

TsT5 A ( (1 3.62)
T4 Ts4 )

s4 5

(T5)3/3 - 1)
p p TS5 Y/(y3(13.63)

Ps5 = Ps4 T s4
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f( -5)s -- P = s4 ( )
f(M) f s f (M 4 (13.64)

I~~ . 5) =(1 5

Verify that f(M 5) =f<fmax (13.65)

For a first approximation take M5  M4  (13.66)

Iterate using Eqs. (13.31), (13.32) (13.33)

Iteration converges to fix M5 .

\2
T 1 + M5(13.67)

T5 = Ts5 /(T 5 /T5 ) (13.68)

* (Y 3

/P. sT5)
(P5)= (T5(1 3. 69)

P5 = Ps5/(Ps5/P 5 ) (13.70)

Further Input Data: cf

E-( Pzc) (13.71)SE(W f (1 - FS5) + (1 x -) Y AM5

-(1- x)y3MM Y2  R2  Tz 0
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Iterate from Eq. (13.14) until x converges.

Further Input Data: (P51/P57  6

P s 7 P s/(PS1 /P5 7) (13.72)

we= L~ T5  
(13.73)

=(P 7 - 6 (13.74)

w (L - RESULT (13.75)
net

w
qi (h5 1 - h)- (13.76)

Wc RESULT (13.77)
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14. OPTIMUM VELOCITY RATIO

The calculation sequence summarized in the preceding sec-

tion reveals that a comple cycle calculation requires us to

specify numerical values for about thirty input parameters.

One of these is the velocity ratio (V1/V 2 ) = y . The calcula-

tion procedure outlined above then permits us to find the cor-

responding value of the mass flow ratio x , assuming that

there exists a value of x which satisfies the governing

thermodynamic relations for the specified values of the other

input parameters.

If we now change the value of y but hold all other in-

put parameters fixed, we can repeat the above procedure and

find a corresponding new value of x , if such a value exists.
I

It is evident, therefore, that x becomes some definite

function of y as long as we remain in the domain where a

real solution exists. Of course all other dependent variables

of the cycle are also functions of y In particular, the

overall cycle efficiency 1c is some definite function of y

-4 Moreover, for prescribed values of the other input parameters,

there will be some definite value of y , let us designate it

as the optimum value yopt I which yields the greatest value

of n c that is possible under the specified input conditions.

Our basic purpose therefore is to determine for any prescribed

values of the other input parameters, the value of yopt and the

corresponding value of c)max . Of course the values of xopt

and other dependent variables are also of interest.
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Since a working computer program is now available to es-

tablish values of yopt ric ) max a Xopt and so on for pre-

scribed values of the other input parameters, we can proceed to

study the effects of changes in these other parameters and to

search systematically for such values of the most important

input parameters as will yield the best overall performance

of the system.

I

4
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15. Conclusions and Recommendations

Based on the work reported here and in Ref. (6), the

following conclusions are evident:

1) Ejector performance is substantially improved

through the use of a high molecular weight pri-

mary fluid (i.e., above 100) and a low molecular

weight secondary (i.e., below 30). The mixing

penalty which ensues is offset by the substantial

decrease in ejector losses.

2) The breakdown strength limitation is severe even

at higher pressures. Since the breakdown strength

of a mixture can often be smaller than that of a

single fluid, allowance for this must be made when

considering fluids to be used in the ejector. In

Ref. (6) it is stated that in mercury/hydrogen an

improvement by a factor of 5 in the breakdown

strength is required for a competitive thermodynamic

4 -efficiency.

3) Consideration of the breakdown strength of mixtures

together with other factors seem to indicate that

the sequence of components shown in Fig. 1.1 might

not be the best possible. In particular, serious

thought should be given to an arrangement where the

electrical section precedes the ejector. Here,

mostly secondary fluid is present and the breakdown

strength will be at its highest value.
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The termination of the contract with DoE has left some

questions about the two-fluid cycle unanswered. With the

analysis presented in this report it should be possible to

carry out further thermodynamic studies with various fluid

combinations. Also, more fundamental knowledge on the

breakdown strength of dielectric fluids will be necessary

before the prospects for successful EHD power generation

can be fully evaluated.

I

S 4
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16. Sample Output

A sample output is shown in the following pages. The

case is for mercury/hydrogen expanding from 1500 psia to

700 psia. The value of the breakdown constant, CB , is 8000.

The component loss parameters have numerical values corres-

ponding to CASE B in Ref. 6.

4
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FLUID PROPERTIES

I PSI= 1500.0 PSTA 2 rqi= 1 4,.0 flF(Q R
3 F'I= 700.0 PSTA 4 r1i 17o.) miF R
5 (HSI-Hf1= 13. - () RII/LR A (HFq-HA)= 170 7,0 ruTIt R

7 RH06= 0.7500E 03 I-P/FT3 9 ('R 1= O.ROOOF n4 M') lF rl K/MR

9 NFLlJID= 2 10 US0= Al2OI6 01

11 GAMMA2= 1.4000 12 rp',= 0.R0OF 04 M ", rn w/r'm

SYSTEM PARAMETERS

1 ETAE= 0.85 2 ETAD= 0.85 3 A3/A4=0.?50 4 rF= O.so
5 ETAX= 0.98 6 ETAP= 0.85 7 PS1/PS7= 1.06

COMPUTATIONAL FORMAT

1 DELY= 0.10 2 YMIN= 1.00 1 YMAX= 5.00

WV= 0.2058E 03(EFF MOL WT VAPOR) rAM(tAI= 1.1RIA Y'),'*= 0.10A4

ENTER CONTROL CODE
- >-4

Y X Al/A 3 0')F wAI I RI. AI f UP MS
FFF EFF

5.00 0.4375 0.0015 O.022R 0.2285 00R 0. 0071

4.90 0.4531 0.0017 0.0213 0.2113. 0. 02 9 0.0074

4.80 0.4375 0.0016 0.0228 0.22q'5 O.O9A 0.0074

4.70 0.4375 0.0016 0.0728 0.?R5 0.0-,03 0.007A

4.60 0.4277 0.0016 0.0238 0.2?*R4 0.0107 n0077

4.50 0.4063 0.0015 0.0261 0.?A,260 0.030P 0.0077

4.40 0.4219 0.0016 0.0244 0.121446 ).0.319 n.nop

4.30 0.4063 0.0016 0.0261 ..0.2.20 0.0n-;" 0.00po

4.20 0.4063 0.0016 O.n-Al O.IA2'0 n. 01" .ow)

4.10 0.3906 0.0015 .01780 0.'R07 0i.0r 3 0),X-R;4

4.00 0.3906 0. ' Ol l 0.0 '"R rIqlR .141 Wl.0O,.^.

3.90 0.3750 0.00t5 0.0300 .;011 0). 0-44A 1) 00$4A

3.80 0.3594 0.0014 0.032" 0..3 .! 0.0 AS ,RA.0

3.70 0.3672 0.0015 0. 031. 1 0.,3117 0.0;A 0.0091

3.60 0.3594 0.0015 0. o.-92? 0. (7) 0. nA911

3.50 0.3438 0.001.5 0.0.146 0. 1473 0. 0:7A n.nOQ4

3.40 0.3477 0. O0015 0.0,340 0. A 41 J ). n4 ,U} n. 0'*no

3.30 0.3398 0.0015 O.03C ,9  0.14SA7 10.A497 n. on

3.20 0.3281 0.0015 0.0371 A.737 0. n4o 0.tnl

3.10 0.3281 0.0015 0.0372 n.'1717 O.A419 0. ol no;

3.00 0.3125 0.0015 0.0401 .40R n. 04-_)% A-0107
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7

3.00 0.3125 0.0015 0.0401 0.4028 (.042R 0.0107

2.90 0.3125 0.0015 0.0401 0.402R 0.044.4 o.01,11

2.80 0.3125 0.0016 0.0401 0.4028 0.045P 0.0119

2.70 0.2969 0.0015 0.0433 0.4349 0.047n 0.0118

2.60 0.2969 0.0016 0.0433 0.4350 0.0488 0-0121

2.50 0.2969 0.0017 0.0433 0.4350 .05OR 0.0127

2.40 0.2891 0.0017 0.0451 0.4524 0.0926 O.01t

2.30 0.2813 0.0017 0.0469 0.470R 0.094A 0).013A

2.20 0.2813 0.0017 0.0469 0.470R O.O)570 0.0147

2.10 0.2734 0.0018 0.0488 0.4902 0."94 0.0148

2.00 0.2734 0.0018 0.0488 0.4Q03 0.0A24 0-0156

1.90 0.2656 0.0019 0.0909 0.5109 0.0A93 0.01A3

1.80 0.2656 0.0021 0.0509 0.5110 0.0689 0.017?

1.70 0.2656 0.0021 0.0509 0.5111 0.o/30 0.018?

1.60 0.2656 0.0022 0.0509 0.5112 0.0775 0.0103

1.50 0.2656 0.0024 0.0509 0.5114 O.OR7 O.OOA

1.40 0.2734 0.0026 0.0489 0.4911 O.O890 0.07"'

1.30 0.2813 0.0029 0.0470 0.4719 0.0964 0.0 40

1.20 0.2969 0.0034 0.0439 0.43A5 O.OS6 0.0263

1.10. 0.3125 0.0040 0.0403 0.4046 0.11A 0.o0290
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17. Computer Program

In the section the FORTRAN4 program used is listed.

Results of our calculations are given in Ref. 6.

C T., FLU[ ) 4 Tt ,

+ .\iA),A J,,C.rL,C t','.,P3,ChL] ,CJZ ,CLU,LF, i)ELti,J±LL.., ELY,
"'- ;+''4Y1el" AA fr: 1;rA t iR l l i- "! , A i' I A41A'), .\l A j/ ]2 J J 4 ,

+ 3 2, 0 1, #G3, 3 , .R , -), 3t f, J,, , t S , .11 , 4 2, G1 X,

I)( , 12) 0.,[ 1 , 9
C U,.ATA FILL:

U{ i,2)=1jp.3

J( L, 4) =-.4JUt ,:,)=bL.8J Ut ,) =1.14

,* U( 1, IJ)=4'.L7
J 19  32 1-1 ,t

• J( ., Lu)=Ld.J( I, LI) 1.3
j( 1 1 Z =;4*90.
J( 2, ) 13JO.

1j( e,13) -M3 )3
U( 2, 4t= ,77 9
U( 2, z=73o.53

JA, 1=41..35tJ(2, 8) = "
J( , ,)=L,
'J( 2, O)= 13.
Ut 2 ,LI) =1.:)

* i Ut i, I)=

J(34) 62 .3U( 3, 51 =o4. 3
Jt3,bI=734.5

J( 3, =) ,) J.
J(3, 1.((3, 10}=13.
U C.i, IL)I *.

(, ) = SJ.

J( j4 z 4: , .')

J( -, ) =77j. .';
A( 49, 7 4= i. 16

63



IJ 49 9j

Jr 594)=926.7
U 1 p5) =45. 7

J( 5,d[=949k0.
U( :)Al.

U(~ 591L)=1.3
L)( :,) t 1 J i4 ?.

UC u

IJ(*v7)=90J.

Uc j,4)=1330.

U( 5t)4US.

U(u,61zjJJ.3

Ur 1, 7)=145Q*
u b , ) =4j ..

UC 691O)=2.016.

UC 7, 1) =1 .
J( 7t o1)= 4)O.
U(1,7)=750.

U( 79d)=4JO.
4 J(7t,)=25.01

*J( 7, 1) =4*
U tUCR')=4000
Uic 3qI)=19.316

J( ~,17)=750u.

u( J1)2.5J
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U(")9, ) =1 7J,.
Ui ( , 51z 17."

Jl ,7) z7i). ;
U U( -j, -,i =4OJJS-
J ., -,)=2.
uJ C , C12 ) =2 . L

-( 1Ll= vJ.
UJ 1JP)5JJ.
U( Lu ,'t) = 1o j.

U( .),) =137.5
' 1i0,?=73 J.

tC It.), 8)-=4JU0.
J( 10,9) =Z2

* Ji LJlJ) =Z.JL6
-' 1.) , 1 -. 4

vI 192 3 1.=J (1 .) =/( IL)=l.

,! V(l,7)zl.

V(2,2)=.35
V 29 i, 25
V( 2,4)=a
VI 2, ) = 5

(2,=7).
Vt 3,9 1).
VI 3, 2 J 7

V t , .9
V 3, .=. 7

V( 4,1)=. 5
'V( 49,0=1
V( 493)-=1
V V(4,4) =.

4 V 4,,) =.
V( 4,c z.'9
V( 4,4)=1.
V4, 3 =2

211' (2,1 =.i
d( 2,3)=5.
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C 7)ATA INPUT

i F 111 oL'.-2 1 G ri L3.)

IF IU.ci.d.-4) 4.J TLi 232
529i., I T - I53J)
:)30 F 6 A T 3 19X'E T2R FL U I P RUP E R TY C HA:G3E S I F A~N Y.

.'540 F,0*)1(,F9.4)
IF(Jij.c..JJ Gd TO5 50
EF(JU.F: .- Li ~U TI *03
I F ( Jj. L - GJ Ti 133
IF ( JU.t.3 Gu i Tj 03
I -t( J;. E. .- 4 Gd MJ 232
U(IUJJJLU

UC :)2

5o, e;JR'1..TP J',3j(1E.1jftR SYSTEM* PAr'A41ER CHAN.,&E, IF ANY.')

IF(V.L.J) GO TO 510
li-(JV. 1.-) Gu TJ 500

I~(V~t-J ~. GU T-1 130
IF(V.-a.lGil T J SOJ

IFCJV.*PL-1*t4 %2J Ti 232
v ( IVtJ 4) =Zv

57, ,1TE(6,5aj)
53 F~ i''L Ck4AT CHANGES, IF 41\V.11

i~E~J(5,5-j Jdz:%
I~i~.~j.)) GO TO L30

IF(J~c.-2J Gu I-i B3U
IH4.~w.3) Gu T-. 300)
Ir~b,.Q.-t)GU TJ 3 2

GO TC 570
130) PS (1 )=J( I10,11

TS (I)=,J( IU,2)

- - I1( 1)=It 10,4)
4 'ELHaUUJ,5)

*'19 )=uj( I it, 1)
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FLI .'mj33 "/ IC ~
IF( L JU)..j I I I J T0 4 0.

,.=- i Ii)

4JG:3 TO 0 JA

Gs~ .1 A

4.1J r v ( iv 1 )
__T J Vi I V, ?_
A3A4=(Ivt31

ETA =VCIV,6)

LY -1A. I I1 I

A~(IT c 13 1L-t3 ) P- S(1 1 T EHJL 1 ~i] )v6
+*J; ~iLIJ I) , A -1 1A2 ,CJ2

I. PSI=',-7 .I PS141,13XP' 2 TS1=',F7.1,' E ~I /

~~~~~~~ I (i,-1I',1T, U/L1,5W, 6 A1S -Hoi,72
+1 13TU/L J'/I
+e4Xt , i~luc' tC1.2.491 Lb/ir13',')Xp 8 C61211L 1,1. 4 A2 UEG K/C~ri

+%,4A 1 -,;M 4AZ= I,1. -41 i, 1.12 Z-2=',ElZ.4, ~I2 ~ /~
wk I T L( 6,1:U) ETA-,T 34CrX.E4,PiS

+4X, F :T ,) .2 1 -i 2 ,..Ai=IF 5 13X
+1 3 43 /A +=1 ,F5 .3 2x, I~ I ,e,.p:5/-*Xt 1 5 ErTAX=',F5.2p3X,

~6 FT,'',f-5.2vX, 17 P,1!Pai7zIPF5.21

+'t,+ I jcL fzF.,~, 2 YAI4 5 # 3 YAAX=,PF5.2)
L~. Y YA IN

T t 21 =1( L I
.72 bIA.4T 4 1)

G2.5= G /(A .*4,A2- 1
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o26=G25- 1.

X I( I I ;KT IX I (I

F 1I i +, I iC 1/1A21'A G I /r

c A CAL. ru'- FU<IJ[ONS

d 1 j-NiI ATL(2,J) Y
hi2 3 F~h 0A T' JI ,Y'F7.3)

83J JJ c650 L3~.I2

8 5G CC,', IINjE
I;: Y L--. YIN) GO TO 500

14 Y=Y-DELY

C it4UlLI3i<LJ AiN Pti"3'tMANCE

+31X, #EirF 7TAt'EF~FI)
Y= Y'-'Ax

2j . -=ZfU ( Y)
3J.) p S7= p i L)/)J.>P S 7

E. X = vL / X
IF (.NLX.LE,0&:LHiI GO TJ 340
WE K 1hLH
R~ITE (15,32.3)

32. F K1AIl ( I 114X,'AV AI LABLE ENT HAL PY DOQOP AT TA 14 ED I
-*tj 4ErT=E TA ,,cEx- P/ ErA P

E ~TAC = .;.E T1:
0--l1 A A = L TAX J 3 cL H- -v P~ / E T AP

Y Y- 0E LY
IF(Y.6E~.Y4I '?4) u r.) 238
GO IC. 5J3)

C i-J CTIL X-4ACH

1 FLAG =.
OMJU'iTJ
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.Ji x = I.- * (/-G.
#- 1.4 V 1.)s/F

I - L. 1 ( O -O

':-,~ TUR

1 u -jF"X F1-1 4t u/ A F =1EZ4
IJELF=JKaS(FL) . O O10

1F(3CLF.LT..iF-J:)) 3,U TO IJ23

,Jk i T=., L; J4 T +~ 1
I!:( K LU ,iT .L,. 2J) -JJ TO 13J0

IOt 0,+ F r ;J 4A 't F 7. 5, F= EI2.4,8 AIfTER 20 ITERAT;>JS')

F 1 0~
C FiJ.':CT-,14 XtERJ(Y)

hIPL1CIT r'.cL'44 (A-H,0)-Z)
I T E~=O

13 3 Sz.E. .5E -,~) JO TOU 700
AZ c.-.
!E TUR. J

7.)J I F (E .GT )J GO TG 723

" E Tj?%N
72') XL=0.

IF (Au.E .JE. .5L-U 4) GO TO 730

13. ;L(-L~. Gf TJ 75J
;RUTc(u,74j) E

75J~ A= IXL t,' 12.

A3SE=A..S(E)
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IF(ITL-,.LL.13) 0-0 TO2 780
" ITL o I Mf) x

74 1n rJA t(.O4,IX=IvF 1.5,0 2-=I#ELZ.4y' AFTER 16 ITEtRATUNSI)

.E TURN
71u IF(A3S' .GE..5E-041i ;O TOi 160

XZE~C-A
;%E rUaeN

76J IF(t.Lr.cO.) GO TO 770

ilTO 15 0
70XLz)(

GJ TO 750

FJNCTI Jjtf CSSX
14g'LICIT ?L-L * 4 (A-fitt 1)

+ F Y tF-4A' 9 ,jFU i-li F -"A ,GA'i.i4l11- N 414J 9 ' 112, t13 14 ,- 15,

\.'t2)-r (A )v*G.TLiiL/AiA *(1~2$Tt)T2)
I- X(~.T.. SAJ A) 1; 2 w Y4 ' N1 X,

A.-U 2 )1.
I ( 2321 LI/Y**i2;A4,A /A;.A2 4cR1/R2

2i.m TS21=L.;-x:.4T(-)~
P (2)= d(2I*S2T2*4G23

1.A,' 4A2 3A4 C) C~2 PST 3. -G 1*M 33 J

G3 1= (;AG'.41-.2.

Gj34=G. j- 1.

TS ( 3) (*'*L~*TS ( I )+( 1 .- X) tCP2* TSCZ /Ci 2 3
F1=S2)-( L.+ '21*A.MI( ' -*, I *-,25J

ALAJ=X*JL/(L*-X4.X*O)

PS XxP0j.i4&)( PS'X)
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iF (FM)..LE~r 4AA I~ [, 3 2 1
Xi A= L.
t- IX10> = F/F 1A A
FA X FM A X

24.,) FUV-*,4T ( I J , 4A, I ~ F 1.5,v X =1 F 7. 5 , -MX/F'4AX=' ,E12.14)
GJ TC '+-+

241 X4x=xN-_r4(iFAX,,Ar 4A~3)

24 GAYS., T . 14 4X ) / JAAA IO f 241*S " LT )/6A. A1 ( Xr'
+ jK y,,v T A; 2 /u A A

AA4YK 1. ? ; A+1
IJ PT0 ," Lc A i O 4

eR I T Y , x .t.(Y(''J''l)X

* IF(v.LE.F4TXJ - LIM 243ECEDJ

A,.4~ Y b2~ = 1FiY~

AX *-4 3 1 1.

F AS 2 AT 3) JL AM**

6 1, .1 iT('J'4 (Y F 1.5 t X #F 7 5, F'Y/FM4X=' E-12.4)
24 i Nj 2.1 SA :I .

IT 32)T-t 3) /S1

-- 71 0 i



U7'

XA4 (4 )= 1.
F.=FM A
o" IT i (.p , 253 ) Yo X I F 144X

t. d Til 2!)4

25-tT X.(,) I~ A~r4 *,AT433

T 4~ .=1 L G3 !./ r 4 4

T) LT f.(4) ET4

9 ( ) =D., 14 )2/;) S 4P 4 F4

P+G34 55*G3
0 ELS= r X)* E/(L-XT*S4

TZ5=T-W 2) TL T s
p ,,(tI iai: C

F 4 -3= rS j 11 S 4A /PSA(4A,).UP.S*15/FtMf4
ETI FIFm5 N G;T 5

4AF~XF5FA

YtA#F45F72



18. Nomenclature

A - area

a - speed of sound

CB - characteristic breakdown constant (Eon 10.3)

Cp - specific heat at constant pressure

cf - friction loss coefficient - condenser

E - breakdown electric field strength

E(x) - Eqn. 11.5

F(M n )- Eqn. 5.16n

f(M) - Eqn. 5.3

fmax - Eqn. 5.15

g(M) - Eqn. 7.5

g - Eqn. 7.7

gmax Eqn. 7.9

Sg - Eqn. 7.10

h - enthalpy

I - irreversibility

M - Mach number

h - mass flow rate

Pe - gross electrical power

p - pressure

qin - heat input

R - gas constant

- universal gas constant

s - entropy

sm - entropy of mixing

73



T - temperature

V - velocity

W - molecular weight

we - gross work out per unit mass

w - ideal pump work per unit massp

Wnet useful electrical output per unit mass

x - ri/ 3

y - Vl/V 3

z - quality of vapor

B - Eqn. 10.7, dimensionless breakdown constant

y - ratio of specific heats

A( ) - change of

- permittivity of the medium

nc - overall cycle efficiency

nE  - Eqn. 8.13, ejector effectiveness

*D - Eqn. 9.6, diffuser effectiveness

n - pump efficiency

n - excitation efficiency

P - gas density

- steady flow availability

- mass ratio of condensible primary to dry secondary
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Subscripts

0 - ambient conditions

1 - primary, entrance to ejector (exit from boiler/superheater)

2 - secondary, entrance to ejector (exit from separator)

3 - mixture, exit from ejector entrance to diffuser

4 - mixture, exit from diffuser entrance to generator

5 - mixture, exit from generator entrance to condenser

6 - primary, exit from condenser entrance to pump

7 - primary, exit from pump entrance to boiler

f - saturated liquid

41 G - gas or secondary

g - saturated vapor

n - next value

s - stagnation

v - vapor

x - exit station of hypothetical minimum loss device

y - exit station of ideal ejector

z - exit station of condenser
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